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GenDivRange: A global dataset of 
geo-referenced population genetic 
diversity across species ranges
Katalin Csilléry   1 ✉, Haonan Yang1, Tin Hang Hung   2, Priscila Rodríguez-Rodríguez3, 
Jonathan Miller4, Viviani Mantovani5, Yohann Chauvier-Mendes   1,6 & Michael P. Nobis7

The spatial distribution of genetic diversity within a species’ range reflects its past demographic 
history, and its knowledge is essential to better understand the limits of species ranges and to predict 
range shifts in response to a changing environment. We present GenDivRange, a unified dataset of 
published geo-referenced estimates of genetic diversity for 1,109 species, each represented by at 
least five populations placed on their range maps estimated from Global Biodiversity Information 
Facility (GBIF) observations. A total of 19,173 populations across the globe and from most major taxa, 
covering terrestrial, freshwater, and marine organisms, are included. At least one of the three genetic 
diversity estimates is available for each study: expected heterozygosity, Nei’s gene diversity, or allelic 
richness, mostly estimated from microsatellite markers. Additionally, the dataset contains the detailed 
taxonomy, biome, breeding, and adult habitat of each species.

Background & Summary
The worldwide loss of biodiversity is proceeding at an alarming rate, driven largely by land/sea use change, 
direct exploitation, pollution, invasive alien species, and climate change1. The rate of species extinction might 
even indicate the beginning of the Sixth Mass Extinction event2,3. Global multi-species databases, such as the 
International Union for Conservation of Nature (IUCN) Red List of Threatened Species4, which provides 
expert-evaluated conservation status, and Global Biodiversity Information Facility (GBIF)5, which catalogs spe-
cies occurrences, are essential for shaping conservation priorities6,7. However, it is not widely recognized that 
conservation efforts would also greatly benefit from integrating species intraspecific variation, i.e. phenotypic 
and genetic variability between individuals and populations8–12. While there is no universal measure of pheno-
typic or trait variation across species, genetic diversity can be measured in any taxa thanks to the development 
of molecular markers13. Accordingly, the Kunming-Montreal Global Biodiversity Framework has now directed 
a global effort to monitor, manage, and report (albeit non-genetic) proxies of genetic diversity, such as census 
population size14. Yet, we are still lacking unified resources for integrating direct measures of population genetic 
diversity to conservation practice at the global scale.

Measuring genetic diversity became possible starting from the 1970s, thanks to the development of allozyme 
markers15. Overtaking other marker types such as AFLPs or RFLPs, microsatellites - also known as short tan-
dem repeats, STRs, or simple sequence repeats, SSRs - have become since the 1990s the dominant marker for 
estimating genetic diversity13 and for population genetic inferences in general16,17. Microsatellite markers are 
hyper polymorphic co-dominant and principally neutral loci with a relative abundance and uniform distribu-
tion across genomes. With the development of high-throughput sequencing technologies and whole genome 
sequencing available at the population level, the field of conservation genetics is transitioning to conservation 
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genomics18–20, despite the lack of good-quality genome assemblies in most non-model species. Indeed, using 
too few individuals and short-read sequencing impedes the development of quality reference genomes, which 
also hinders the accurate estimation of population genetic diversity across the species range21. For example, in 
humans, missing alternative alleles from the reference genome led to missing more than two-thirds of structural 
variants22. In model organisms and humans, the first pan-genomes are being developed to resolve this prob-
lem23, but in natural populations, this is still out of reach. Thus, microsatellites are not only the most common 
marker type in published, population-level reports of genetic diversity, but are likely to remain a marker of 
choice for conservation genetics, paternity analysis, and studies of population structure due to their relative 
inexpensiveness and ease of use24–26.

Expected heterozygosity (He) is the probability that an individual will be heterozygous at a given locus or 
over several loci in a multi-locus system27. This metric is the most commonly reported proxy of genetic diversity 
from microsatellite markers, and its use is rooted in population genetic theory. Due to the finite size of popula-
tions, genetic drift leads to the stochastic loss of He via the fixation or loss of alleles at a rate that is proportional 
to the effective population size, Ne

28. To estimate Ne, detailed demographic and life-history data are needed, 
which are difficult to obtain, but the use of molecular markers allowed the estimation of He and laid the founda-
tion of conservation genetics12,29,30. He is widely used as a predictor of reduced mean fitness through inbreeding 
depression31,32. Under certain assumptions, especially in small populations, He may also serve as a proxy of 
adaptive potential measured as the heritability29,33. Evidence for this theoretically expected relationship has been 
controversial34–36, yet genome-wide estimates of He remain the best pragmatic tool for conservation genetics37. 
Thereby, a unified resource of population-level estimates of He would not only serve conservation practice but 
may also be useful to further elucidate the limits of its potential use.

At present, there is no unified resource for population-level geo-referenced genetic diversity data. Here, we 
propose the GenDivRange dataset to fill this gap (Fig. 1). GenDivRange contains geo-referenced population-level 
estimates of genetic diversity, principally from microsatellite markers, for 1,109 species and 19,173 popula-
tions across the globe. We recognize that genetic diversity data are not sufficient alone, as the genetic diver-
sity of a population is only meaningful in comparison with other populations of the same species. Therefore, 
GenDivRange includes only studies with genetic diversity reported from at least five locations (populations) and 

Fig. 1  Summary of the GenDivRange dataset and its geographic and taxonomic biases. (a) The number 
of species in the newly assembled (GenDivRange) and previously published (DeKort, MacroPopGen, and 
VarVer) datasets and their overlaps. GenDivRange leverages the value of previous datasets by boosting the 
number of unique studies included. (b) Taxonomic composition of the GenDivRange dataset as simplified “life-
forms”. (c) Coordinates of populations with genetic diversity estimates across the world and by data source. (d) 
Taxonomic composition of the GenDivRange dataset by data source.
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combines genetic diversity indices with the species ranges. GenDivRange also integrates detailed taxonomic, 
biome, and adult and breeding habitat information in order to help identify drivers of genetic diversity loss and/
or taxonomic groups and ecosystems that have been underrepresented in genetic evaluations. While genetic 
diversity indices were extracted from scientific publications, theses, or published reports, additional non-genetic 
data were downloaded from public databases using semi-automated pipelines. Finally, GenDivRange also inte-
grates three other published datasets of genetic diversity indices: VarVer38 and MacroPopGen39, and data from 
de Kort et al.40 after filtering according to our inclusion criteria.

Methods
Collecting geo-referenced population genetic diversity data.  We searched the literature for pop-
ulation genetic studies that report at least one measure of genetic diversity, including allelic richness and/or 
expected heterozygosity and/or Nei’s gene diversity, from at least five geo-referenced locations. The different 
geographic locations are subsequently referred to as populations. Only studies using co-dominant nuclear mark-
ers, that is allozymes, RFLPs, SSRs, ISSRs, and SNPs, were included. We included both diploid and tetraploid 
species. The search for suitable studies was performed in the framework of a group project of the Landscape 
Genetics Distributed Graduate Seminar (DGS) in 2020 with six participants (four are co-authors herein: THH, 
PRR, JM, VM). Each group member searched for publications for a specific taxonomic group of his or her 
choice. Nevertheless, we invested more resources in searching for studies on plants, which were lacking from 
other genetic diversity datasets. We performed the searches using the PubMed Central (PMC) Taxonomy 
Browser mainly using the following keywords -population genetics-, -genetic diversity-, -heterozygosity-, as 
well as NCBI taxonomic identifiers from https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi). For 
example, “frog”/“anura(n)”/“txid8342[Organism:exp]” AND (“population genetics”/“heterozygosity”)AND 
(“microsatellite”/“SNP”).

From each study that met the above inclusion criteria, first, we constructed species, study, and population 
IDs (Table 1). As a standard, we used the nomenclature and the taxonomic concepts of the Global Biodiversity 
Information Facility backbone (GBIF)5. Each species was given a unique four-letter ID constructed from the first 
two letters of the genus and the epithet of the species’ scientific name, as well as a study number. For example, 
for the species Abies alba Mill. the first study that was entered into the dataset received the study ID ABAL-1. 
If the four-letter code was already used for another species, the next letters of the epithet were added until the 
four-letter code for the species was unique. Different studies of the same species were treated as separate entries, 
even if they used the same molecular markers. The IDs of different populations were created by adding a popula-
tion number to the study ID (e.g. ABAL-1-1). Then, genetic diversity, study size, and geographic location-related 
values were extracted for each population (Table 2). Data were extracted from the internet browser or PDF 
versions of the papers or from Word documents or Excel tables given in the Supplementary Materials. We 
used Tabula to extract data from PDFs (https://tabula.technology/). All coordinates were converted into the 
longitude-latitude system in Decimal Degrees format with EPSG:4326 standard (WGS84) using the function 
spTransfer of the sp R package. Some studies did not have exact population coordinates, such as studies of terri-
torial or migratory species. In this case, studies used approximate coordinates, for example, the place of catching 
in most studies of fish species. When coordinates were only given as a map image, we used WebPlotDigitizer 
(https://automeris.io/WebPlotDigitizer/) to obtain coordinates for each population. Five hierarchical levels of 
geography variables were defined for each population to include different depths of information available on 
the sampling site. The first level geography variable was always the country, which we deduced from population 
coordinates using a Python script and Google Map API.

Newly collected data was combined with the VarVer38 and MacroPopGen39 datasets and data from de Kort 
et al.40 (subsequently referred to as DeKort). After removing studies having less than five geo-referenced popu-
lations, we homogenized the data columns of these datasets with our data, for VarVer and DeKort, the DOIs of 
the original studies were reverse-searched using a custom Python script with the CrossRef title with a minimum 
Levenshtein ratio match of 0.9 using unibiAPC (https://doi.org/10.4119/UNIBI/UB.2014.18).

Collecting species distribution data.  We extracted species distribution data from GBIF, which integrates 
observations from OBIS (https://obis.org) for marine species. To that end, we used the function occ_download 
of the R package rgbif 41 to download species observations on a global scale in January 2025, excluding observa-
tions without coordinates or with geospatial issues. Each species download was afterward post-filtered. At first, 
coordinate duplicates were deleted. Then we used CoordinateCleaner42 to exclude coordinates of capitals, near to 
country centroids, the GBIF headquarters, or around known biodiversity institutions, and excluded coordinates 
with equal latitude and longitude. Then, we performed a precision cut based on the GBIF ’coordinateUncertain-
tyInMeters’ measure. Observations showing an uncertainty > 5 km were removed if at least 80% of the species 
observations had < 5 km uncertainty. Otherwise, a > 10 km threshold was applied. Finally, we filtered records 
according to GBIF’s ’basisOfRecord’ and ’degreeOfEstablishment’ to exclude records from zoos, botanical gar-
dens, and other unsuitable observations. The initial GBIF download for each species is documented by a GBIF 
DOI (column GBIF_doi in Table 1).

The cleaned observation data is used in the interactive map of the GenDivRange web application (www.gen-
divrange.org) to visualize the location of the populations and their genetic diversity. Specifically, for each species 
and different zoom levels of the map, we generated grid-based species distributions with a spatial resolution of 
0.1  × 0.1 and 0.5  × 0.5 decimal degrees (c. 11  × 11 km and c. 55  × 55 km at the equator) using the rasterize 
function of the terra R package43.

Collecting ecological data.  We used a custom Python script that integrates the Selenium and Requests 
modules to match each species to the EOL database automatically (https://eol.org/). If a match was found, the EOL 
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page URL, the species’ common and scientific names, and the species overview were extracted. We performed 
key word matching completed by manual inspection of the overview section to categorize species into 14 sim-
plified “life forms” to facilitate data search. For animals, we used Mammals, Birds, Reptiles, Amphibians, Fishes, 
Molluscs, Crustaceans, Insects, and Other invertebrates, and for plants, we used Woody plants, Herbaceous plants, 
Mosses, and Algae, and, finally, we also included Fungi. Using another set of keyword-matching, we assigned spe-
cies to three habitat classes: Terrestrial, Freshwater, and Marine, and completed with manual assignment. Given 
the transition of habitat for some species, such as fishes and amphibians, we separated the breeding and adulthood 
habitat information. Specifically for all fishes (in a broad life-form sense), we extracted the habitat keyword from 
FishBase (https://www.fishbase.de/) to complete the habitat information. For example, for anadromous fishes such 
as Gasterosteus aculeatus, we used freshwater as a breeding habitat and seawater as an adult habitat.

We used the Terrestrial Ecoregions of the World database from WWF (https://www.worldwildlife.org/pub-
lications/terrestrial-ecoregions-of-the-world) to extract the dominant biome of each species. Geo-referenced 
observations of each species obtained from GBIF (see above) were overlapped with the WWF database, and the 
biome with the highest proportion of occurrence was assigned to each species.

IUCN red list status of each species was extracted using the function get_status available from the gbif.range 
R package (https://www.envidat.ch/dataset/gbif-range-r). IUCN red list status were here informed accord-
ing to seven categories: “Not Evaluated”, “Data Deficient”, “Least Concern”, “Near Threatened”, “Vulnerable”, 
“Endangered”, “Critically Endangered”. Species with no hits in the IUCN database were classed as “Not 
Evaluated”. We also complemented the dataset with full taxonomic information (Genus, Family, Order, Class, 
Phylum) using the R package rgbif.

Data Records
The current version of the GenDivRange species and genetic diversity datasets are available at Figshare44. The 
data is organized in two Tables. The “Species table” includes the species of a given study with general informa-
tion on the study design and the species analyzed (Table 1). The “Population table” contains the coordinates and 
genetic diversity values for each population (Table 2). The species occurrences can be downloaded using the 
GBIF DOI given in the Species table (Table 1) and applying the filtering as documented in the custom R script 
available at GitHub (https://github.com/kcsillery/GenDivRange).

Technical Validation
Quality control of the genetic diversity indices.  We applied several manual and automated data 
checks of the genetic diversity indices. First, and most importantly, all newly collected data (i.e. Data_source 
is “GenDivRange”, Table 1) was checked independently by a second person (HY). The most common errors 
appeared in the coordinates, including errors in the published papers and errors during the data extraction. 

Data column name Content

Data_source One of the datasets: GenDivRange, VarVer, MacroPopGen, DeKort

Spec_id GenDivRange species ID constructed as the first two letters of the genus and the species Latin 
name

Study_id Spec_id and an integer to identify the study

Spec_Latin_GenDivRange Latin name of the species that was used to derive Spec_id

Life_form
Life form of the species can be viewed as a non-expert readable taxonomic category: Algae, 
Amphibians, Birds, Crustaceans, Fishes, Fungi, Insects, Mammals, Mollusks, Mosses, Other 
invertebrates, Herbaceous plants, Woody plants, Reptiles

DOI_study DOI of the scientific publication, URL to unpublished thesis or report, orMacroPopGen 
publication DOI when we could not identify the data source

DOI_data DOI of the genotype table associated with the publication. Most of the included studies pre-date 
data archiving obligations, and the raw data has not been published in a public repository.

Spec_Latin_publication Latin name of the species in the published article

Marker_type Type of genetic marker used to calculate the genetic diversity indices: Allozymes, ISSR, RFLP, 
SNP, SSR

N_pops Number of populations for which genetic diversity has been reported

N_loci Number of loci from which genetic diversity has been calculated

GBIF_id ID of the species in the GBIF database (www.gbif.org)

Spec_Latin_GBIF Latin name of the species in the GBIF database (www.gbif.org)

Genus_GBIF, Family_GBIF, Order_GBIF, 
Class_GBIF, Phylum_GBIF Taxonomic rank from GBIF

EOL_id ID of the species in the EOL database (www.eol.org)

Spec_common_EOL Common name of the species according to the EOL database (www.eol.org)

BIOME Terrestrial Ecoregions of the World database from WWF (www.worldwildlife.org)

Habitat_fishbase Habitat type for fishes according to the FishBase database (www.fishbase.se)

Habitat_breeding Habitat type for breeding, manually assigned based on the EOL database (www.eol.org)

Habitat_adulthood Habitat type for adulthood, manually assigned based on the EOL database (www.eol.org)

GBIF_doi DOI to download the species occurrences used in the GenDivRange Shiny App

Table 1.  Data columns of the Species table part of the GenDivRange dataset.
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Thereby, we also checked if the geographic coordinates corresponded to the population names cited in the paper 
using visual inspection in Google maps. For all Data sources, we performed semi-automatic checks. Notably, we 
checked that extracted data values were of the expected type (e.g. sample size was an integer) and lay within their 
expected ranges (e.g. the expected (He) and observed (Ho) heterozygosity between zero and one). VarVer had 
several zero Ho values, which were not true zeros but missing data, which we corrected. We also checked studies 
by hand where (He − Ho)/He < - 0.5 (n=39), and 30 of them had typos in the reported values. Several entries 
wrongly reported the mean number of alleles Amean as the number of alleles in a population (A) (Table 2), which 
were corrected. 5.9% of the populations have a sample size below 10 diploid individuals. Although this is low, we 
decided to keep them as they could represent studies of rare vertebrate species. We also encountered studies with 
highly unequal sample sizes, which was particularly common for fish, reflecting genotyping from catching sites. 
We warn future users to pay attention to the N column. Finally, we checked if the population coordinates were 
within the areas defined by the species occurrence points from GBIF. If none of the populations were inside the 
species range (200 studies), we manually checked the coordinates. We corrected three study coordinates from 
VarVer, four from DeKort, and several from MacroPopGen.

Ninety percent of the studies included in GenDivRange report genetic diversity using microsatellite markers 
(Fig. 2a). The most commonly, and often only, reported genetic diversity measure is the He (98%), followed by 
Ho (62%), A (50%) and the inbreeding coefficient (Fis, 26%), Fig. 2b). Studies that report only He are difficult to 
interpret due to the strong dependence of He on allele frequencies, especially in multiallelic markers. When a 
minimum of He, Ho, A, and the number of individuals (N) is reported, it becomes possible to assess the deviation 
from the Hardy-Weinberg equilibrium, apply a sample size correction, and check deviations from expectations 
under different mutation models. Several studies indicate potential deviations from the Hardy-Weinberg equi-
librium (Fig. 2c). Not surprisingly, Ho was particularly low for selfing plants (Fig. S1). This highlights the neces-
sity for broad biological knowledge when performing meta-analysis of He across taxa. Indeed, similar deviations 
could be expected for mollusks45 and some forest tree species46, for example.

We can only speculate that most He values were recorded without correction for sample size. For a sample 
without related or inbred individuals composed of n allele copies, an unbiased estimator of expected heterozy-
gosity is � �= − ∑− =( )H p1n

n i
I

i1 1
2 , where �pi

 is the sample proportion of allele in47. Most studies have a low 
sample size: 10% of the populations sampled less than 10 diploid individuals, 29% between 10 and 20, and 61% 
above 20. Therefore, a sample size correction would be highly desired.

Much of the population genetics theory is based on the infinite allele model (IAM) developed for allozyme 
data or the infinite sites model of DNA substitution mutation27. Yet, microsatellites mutate by strand slippage 
during DNA replication, leading to gain or loss of replicates48. For population genetic inference, Slatkin49 pro-
posed the use of the earlier developed stepwise mutation model (SMM)50. We predicted the number of alleles 
(A) for the reported value of He under these mutation models. In a population in mutation-drift equilibrium, He 
is a known function of M = 4Neμ. Under the IAM, He = M/(1 + M) and under the SMM, = − +H M1 (1 2 )e . 
Under the IAM, in a sample of n genes, A has a known expectation that can be calculated using Ewens recursive 

Data column name Content

Spec_id GenDivRange species ID constructed as the first two letters of the genus and the species Latin name

Study_id Spec_id and an integer to identify the study

Pop_id Study_id and an integer to identify the population

Spec_Latin_sub Given if a population belongs to a different subspecies or variety

Geog_1, ⋯ , Geog_6 Spatial population identifiers. Geog_1 is always the country or the sea. The last value is often the population ID used 
in the study.

Latitude Population latitude coordinate in WGS84

Longitude Population longitude coordinate in WGS85

N Number of individuals genotyped per population

A Mean number of alleles per population across all loci

A_mean Mean number of alleles across all loci and all populations

A_tot Total number of alleles per population across all loci

A_eff Effective number of alleles per population across all loci

A_private Number of private alleles per population across all loci

N_genot Number of genotypes

Ar Mean allelic richness

Ho Observed heterozygosity

He Expected heterozygosity

GD_Nei Nei’s genetic diversity

D_clonal Clonal richness

F_is Inbreeding coefficient

F_is_sig Significance of F_is, S: p-values < 0.05, NS: p-value > 0.05

Ploidy Level of ploidy: diploid, triploid, tetraploid

Table 2.  Data columns of the Population table part of the GenDivRange dataset.
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sampling formula as E A M j M( ) /( )j
n

0
1= ∑ +=

− 51; we assumed n = 250 as in previous studies for comparabil-
ity38,52. We found that most empirical data fell in between the predictions of the two models (Fig. 2d) with some 
differences between major taxa (Fig. S2). Further, this exercise allowed us to identify 16 studies, principally from 
MacroPopGen, with typographical errors either in He or A, which we corrected. Nevertheless, we could also 
identify studies where one or two hyper polymorphic loci caused a deviation from the expectations, such as the 
outlier points for Amphibians illustrating a study of bullfrogs53 (Fig. S1). These analyses confirm that effective 
mutation rates may vary substantially among loci, and in different studies, different criteria are used to choose 
genetic markers.

Fig. 2  Genetic diversity indices in the GenDivRange dataset and their validation. (a) The different marker 
types present in the dataset. (b) The different genetic diversity indices reported in the dataset. (c) Expected 
and observed heterozygosity across all populations indicate potential deviations from the Hardy-Weinberg 
equilibrium (diagonal line) in several populations. All taxa together, but Herbaceous plants are highlighted 
because they contain several selfing species with low observed heterozygosity. (d) The relationship between the 
mean number of alleles and the expected heterozygosity in the observed data and their expectation under two 
mutation models: Infinite alleles model (IAM) and Stepwise mutation model (SMM).
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Using genetic diversity indices for macro-level analysis.  The overarching aim of genetic diversity 
databases is to address questions in ecology, evolutionary biology, and conservation that cannot be addressed 
with single datasets alone10,54. Such analysis, however, can be limited by the different biological and statistical 
properties of genetic diversity indices55. From a biological point of view, several concerns have been raised since 
the 2000s that microsatellite markers can have different modes and rates of mutation across different organ-
isms24,56,57. Yet, the statistical properties of genetic diversity indices depend on Ne and μ, mutation rate per locus 
per generation27. Different mutation processes lead to different allele frequency distributions, which are the raw 
data for calculating genetic diversity indices. While there has been a great effort in population genetics to develop 
metrics that are independent of the population allele frequencies, this goal has never been fully achieved; the 
problem is particularly acute for multiallelic markers, such as microsatellites24.

Recently, several global analyses of genetic diversity were published, often citing the use of genetic diversity 
for conservation planning10,40,58. While it is tempting to use He as a universal measure of genetic diversity due to 
its relationship to Ne, it is not comparable across studies or taxa due to its dependence on the allele frequencies. 
Previous studies attempted to overcome this problem by recalculating He from the original data59 and/or stand-
ardizing He to derive a metric for use across species and studies40. Nevertheless, this simple pragmatic approach 
does not remove the dependence on allele frequencies because the theoretical maximum of He depends on the 
population allele frequencies. Following Reddy and Rosenberg60, a promising standardization has been carried 
out for a meta-analysis of different studies for European beech61. However, this approach requires the genotype 
data. To this end, the GenDivRange website proposes that authors submit their genotype data to a data reposi-
tory of their choice and submit the DOI, which will then be added to GenDivRange.

Geographic, taxonomic, habitat, and conservation status related biases.  Macro-level analyses 
of genetic diversity could also be limited by systematic biases such as those related to the geographic distribu-
tion of studies, species taxonomy and habitat, and conservation status54. Geographic and taxonomic biases in 
GenDivRange reflect well-known biases related to the economic situation of countries and the preference of study 
organisms by researchers and conservation agencies62,63, nevertheless, by integrating data from VarVer, which 
focused exclusively on vertebrate species (Fig. 1d), MacroPopGen, which also concentrated on vertebrates but 
limited its scope to the Americas (Fig. 1b–d), and DeKort, which included all taxa, but with over 50% of its data 

Fig. 3  The GenDivRange dataset reveals publication biases in genetic diversity with respect to habitats (a), main 
terrestrial biomes (b), and conservation status (c).
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derived from plants (Fig. 1d), we were able to compile a dataset that is geographically and taxonomically more 
balanced than any of these individual datasets on their own (Fig. 1c).

Our study also confirms that genetic diversity data for marine organisms are less abundant than for terres-
trial ones10 (Fig. 3a). Furthermore, we found that some biomes are more studied than others (Fig. 3b). Initially, 
we anticipated a disparity in study numbers across biomes, which would align with well-documented differ-
ences in species richness64. However, we observed instead a predominant bias toward biomes in the world’s 
most economically developed regions. The majority of the studies focus on temperate broadleaf, conifer, and 
mixed forests, as well as on Mediterranean forests, woodlands, and shrubs. Tropical forests are also well repre-
sented, though they remain significantly understudied, given their large biological diversity, especially in Africa 
(Fig. 1b). Among the least studied biomes are (sub-)tropical grasslands, some of which exhibit species richness 
comparable to that of tropical forests65, along with less species-rich biomes, such as deserts, xeric shrublands, 
and tundras.

Rather surprisingly, nearly 2.5 times more genetic diversity data are available for species classified as Least 
Concern (785 species) compared to those listed as Near Threatened, Vulnerable, and Endangered combined 
(314 species). Furthermore, a high percentage of species in plants, invertebrates, and fish are classified as Not 
Evaluated or Data Deficient (Fig. 1c). One of the most pertinent uses of population genetic theory is in conser-
vation biology12. Therefore, it is unexpected that seemingly few population genetic studies targeted vulnerable 
or endangered species.

How much more genetic diversity data is out there?.  GenDivRange contains genetic diversity data 
from 1,109 species, 1,480 studies covering 19,173 populations (Fig. 1a). 287 studies were newly collected, 468 

Fig. 4  The GenDivRange web application has two view tabs, “map” and “table”. The filters of the views 
communicate with one another. (a) All data are at once in the “map” tab, i.e., no filters are selected. By default, 
the expected heterozygosity (He) is shown. Please note that its color range reflects values across all studies and 
species. ((b) When selecting one species, for example, Thuja plicata, the species range becomes visible, and 
users can select from two resolutions. The color range of He is now adjusted to a single study, allowing for a 
meaningful assessment of the variation in genetic diversity across the species range. (c) The tab “table” can be 
selected to view the data or a part of it, as in this example where we show the data available with SNP markers.
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from DeKort fulfilled our criteria, 379 from MacroPopGen and 346 from VarVer. While the data search and 
inclusion criteria were different in the four data collection efforts, the number of overlapping studies and species 
between them is, nonetheless, surprisingly low (see Fig. 1a for the species overlap), suggesting that there are many 
more genetic diversity data out there. We attempted to estimate the number of studies to be discovered by data 
collection efforts.

Following a chronological order of publications, VarVer searched published literature in the Web of Science 
in 2011 using three keywords, “microsatellite”, “SSR,” and “STR” in the title or abstract, and selected those for 
vertebrate species38. MacroPopGen searched the Web of Science and Google Scholar before 2019, based on sub-
mission date, using key words for countries in the Americas (Fig. 1b) as well as “microsatellite”, “distinct popu-
lation”, and “FST”39, and by including a reference list for birds66. de Kort searched Google Scholar before 2020, 
based on submission date, using the keywords “expected heterozygosity” and “genetic marker” and “popula-
tions” and “plant” or “amphibian” or “reptile” or “bird” or “mammal” or “mollusk” from 2000 up to 2015. If we 
restrict VarVer to studies from the Americas and MacroPopGen to studies published before 2011, using a naive 
moment estimator (N n m k/� = × , where n and m are two independent draws from N and k is their overlap), 
we can estimate that there are 2182 studies about genetic diversity of at least one vertebrate population from the 
Americas published before 2011. When we integrated deKort (n = 471) to GenDivRange that already contained 
the GenDivRange new data, MacroPopGen, and VarVer (m = 1022), and we filtered for those containing genetic 
diversity for at least five populations, we found an overlap of only 5 DOIs. This overlap suggests that there are 
over 3000 published studies that report genetic diversity from at least five populations from any species and 
across the world. Additionally, there are certainly many unpublished data sets, including BSc and MSc theses, 
governmental reports, etc. The GenDivRange platform, with its data submission portal, will allow the compila-
tion of these data more efficiently and make it available for research and conservation.

Usage Notes
In addition to the Figshare files, GenDivRange is also available at the project website (www.gendivrange.org), 
where genetic diversity, species and population characteristics, and the species distributions can be explored 
using the interactive web application (Fig. 4a). The genetic diversity indices and the distribution of individual 
species can be visualized on an interactive map under the tab “map” (Fig. 4b), with filters Life form, Marker, 
Habitat, Biome, Species, Study DOI. The full Species table (Table 1) is also searchable under the tab “table” 
(Fig. 4c). The two tabs are connected, and the filters applied in map or table view allow access to the data in the 
other view tab. By clicking on a population in the map, a pop-up window provides additional information about 
the genetic diversity values, the number of individuals and loci, as well as links to the original publication and 
the species pages at GBIF and EOL (Fig. 4b).

GenDivRange is intended as a community resource and welcomes the submission of new genetic diversity 
data. GenDivRange aims to promote FAIR data management principles67, even, retrospectively, for past genetic 
data68. The submission of genetic diversity indices from published and unpublished studies, including theses or 
governmental reports, is possible using a submission template available at www.gendivrange.org, provided that 
the associated genetic data has a DOI.

Code availability
All custom scripts are available on GitHub (https://github.com/kcsillery/GenDivRange).
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